> summary(cars)

     speed           dist      

 Min.   : 4.0   Min.   :  2.00 

 1st Qu.:12.0   1st Qu.: 26.00 

 Median :15.0   Median : 36.00 

 Mean   :15.4   Mean   : 42.98 

 3rd Qu.:19.0   3rd Qu.: 56.00 

 Max.   :25.0   Max.   :120.00 

> str(cars)

'data.frame':      50 obs. of  2 variables:

 $ speed: num  4 4 7 7 8 9 10 10 10 11 ...

 $ dist : num  2 10 4 22 16 10 18 26 34 17 ...

> head(cars)

  speed dist

1     4    2

2     4   10

3     7    4

4     7   22

5     8   16

6     9   10

> lm(speed~dist, cars)

 

Call:

lm(formula = speed ~ dist, data = cars)

 

Coefficients:

(Intercept)         dist 

     8.2839       0.1656 

 

>

> m<-lm(dist~speed, cars)

> summary(m)

 

Call:

lm(formula = dist ~ speed, data = cars)

 

Residuals:

    Min      1Q  Median      3Q     Max

-29.069  -9.525  -2.272   9.215  43.201

 

Coefficients:

            Estimate Std. Error t value Pr(>|t|)   

(Intercept) -17.5791     6.7584  -2.601   0.0123 * 

speed         3.9324     0.4155   9.464 1.49e-12 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 

Residual standard error: 15.38 on 48 degrees of freedom

Multiple R-squared:  0.6511,    Adjusted R-squared:  0.6438

F-statistic: 89.57 on 1 and 48 DF,  p-value: 1.49e-12

 

>

> # Intercept = 절편

> # coefficients(회귀식의 계수) 종속변수 = 독립변수*계수 + 절편

> # dist=speed*3.932-17.579

> # 계수가 양수이므로 양의 상관관계를 지님

>

>

>

> # 추정해보기(신뢰구간)

>

> predict(m, data.frame(speed=3), interval="confidence")

        fit       lwr      upr

1 -5.781869 -17.02659 5.462853

>

> # fit = 예측값

> # lwr, upr = 신뢰구간

> # speed 3 , dist 평균값은 -17.03~5.46 사이에 있음

>

>

> plot(cars)

> abline(coef(m)) #coef 회선의 계수

> coef(m)

(Intercept)       speed

 -17.579095    3.932409

>

>

> [출처] [R프로그래밍] RStudio 선형 회귀 (1) 단순 선형 회귀|작성자 아트 

http://chloe-ynlee.me/221302458526

 




####################################################

cars

summary(cars)

str(cars)

head(cars)

lm(speed~dist, cars)


m<-lm(dist~speed, cars)

summary(m)


# Intercept = 절편

# coefficients(회귀식의 계수) 종속변수 = 독립변수*계수 + 절편

# dist=speed*3.932-17.579

# 계수가 양수이므로 양의 상관관계를 지님




# 추정해보기(신뢰구간)


predict(m, data.frame(speed=3), interval="confidence")


# fit = 예측값

# lwr, upr = 신뢰구간

# speed가 3일 때, dist의 평균값은 -17.03~5.46 사이에 있음



plot(cars)

abline(coef(m)) #coef는 회선의 계수

coef(m)



[출처] [R프로그래밍] RStudio 선형 회귀 (1) 단순 선형 회귀|작성자 아트


####################################################











par(mar=c(1,1,1,1))


워드클라우드 전에 적어주면 됨

forceNetwork


bounded = TRUE

플롯이 화면 밖으로 안 빠져나가게 함


 linkColour="#afafaf"

선 색 조정


slice(match(position, data))


data안에서 position대로 정렬하고 싶을 때?


ex) 

> position<-c("c", "d", "e", ... , "a")


> match(position, data)

[1] 8  7  6  5  4  3  2  1  9 18 19 20 21 22 23 24 25 10 11 12 13 14 15 16 17

# c는 data의 8번째 행에 위치, a는 data의 17번째 행에 위치


> slice(match(position, data))

# 내가 position에 저장해놓은 순서대로 data의 변수가 정렬됨

ggplot(dat, aes(x=YEAR, y=DAT, color=BRAND)) 

  geom_line(size=1) +

  geom_point(size=1.5) +

  coord_cartesian(ylim=c(0,1069235)) 

%in% 연산자 - 벡터의 값 존재 여부 구하기


ex)

a<-b[b %in% DAY,]

c<-subset(d, DAY %in% c("Mon", "Tue"))

%>% 연산자 - 복수 작업 연결하기


ex)

a <- b %>% group_by(YEAR,BRAND) %>% summarize(TOTAL=sum(TOTAL))

rm() - 변수 삭제, 변수 지우기

par(mar=c(0, 0, 0, 0))

png('save_test.png', 1000, 800) #jpeg('save_test.jpg', 1000, 800)


wordcloud(words=names(FRE_A), FRE_A, min.freq = 5, max.words = 100, scale = c(5,1), rot.per = 0.1, colors=pal, random.order = FALSE, family="Arial")


dev.off() #끝

'programing > R studio' 카테고리의 다른 글

rm() - 변수 삭제, 변수 지우기  (0) 2018.06.20
plot 여백 없애기  (0) 2018.06.20
format(Sys.Date(), '%a') - 오늘의 요일  (0) 2018.06.19
substr() - 문자열 추출  (0) 2018.06.19
nchar() - 문자열의 개수  (0) 2018.06.19

+ Recent posts